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The problem of calculating the wave resistance of a cylinder moving under
a free surface in unsteady motion has been previously solved by Sretemnskii
[1] and Havelock [2]. Expressions for the complex velocity and the forces
for the unsteady motion of an arbitrary planme contour under a free sur-
face are calculated below.

1. Let a plane contour of arbitrary form be set in motion from & state
of rest with the velocity v(t) under the free surface of a heavy ideal
incompressible fluid.

We shall choose a coordinate system such that the origin of the co-
ordinates is located in the horizontal plane which is coincident with
the initial undisturbed level. The x-axis is in the direction of the
motion and the y-axis is directed vertically upwards. We shall consider
the fluid motion to be potential and the waves which arise on the free
surface to be small. The latter assumption is equivalent to the contour
being deeply submerged in the fluid.

To find the absolute potential ¢(x, y, t) of the disturbed velocities
of the moving contour in a moving coordinate system we have the Laplace
equation Ap = 0 with the boundary conditions:

at the free surface for y = 0

@ ap % @ dv (t) 0
Ty O G =20 ooy — g =0 (t.1)

at the surface of the body
ap
Fn = ) (1.2)
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at infinity
q’(”:y;t)_’o fOl'T—b—i—OO, (p(xry’t)_’o for}/—*~co (13)

As initial conditions one can take the condition that the motion of
the contour commences without initial velocity and, in addition, that the
fluid is found at rest with its surface horizontal. Indeed, for the prob-
lem under consideration the equation of the free surface will be deter-
mined by the formula

1/d 3
g(::,t):;(—;’;——{-v(t)ai;) for y—=0 (1.4)

At the initial moment of time ¢t = 0 let the contour be found in a state
of rest, i.e. let v(0) = 0; then for t = 0
o9

1
C(I’O):_g_—?;z Y=0

Thus, in order that the fluid at the initial moment of time t = 0 be
found at relative rest and that its free surface be horizontal, it is
necessary that

o9 -
ot v=o=0’ Ply=o=09 for t=0 1.5

As a preliminary we shall consider the particular cases of the unsteady

motion of singularities of the type of plane vortices, sources, etc.

2. Let a plane vortex with constant circulation " at depth h under the
free surface be moved from a state of rest. The velocity potential ¢(x,
y, t) of the absolute motion is then found from the solution of the equa-
tion A¢ = 0 with condition (1.1) and the boundary conditions at infinity.
We shall form the expression

r y+h r y—h )

P=P1— P2+ @3 (CP1=—§n— tan” T, Q2= 5o tan! (2.1)

in which ¢, is for the present an unknown function. It is obvious that
for y =0

) 02 a 0,
s 01— @) =0,  Fa(@—9)=0, Fr(1—g)=—2%;

Then equation (1.1) for y = 0 taking (2.1) into consideration takes
the form

9% Qg 93 ’qg 093 dv(t) 89s . O¢a
52 — 20 (1) Grar F VW G 8, T "o ar =28 5y 2-2)

In all that follows we shall write v instead of v(t). Since
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9 T =z
ay ~  2n 2+ (y— k)
the equality

o]
Q. T R} s
T;— = — —2—5& UM gin kadz 2.3)
0
will then be valid for y = 0.

Then equation (2.2) for y = 0 will have the form

KON ginkzde (2.4)

o0

g, g | P aq>, _ dv ops r S

B — 2 Gzar TV gate at 9z — — % 7og
o

We shall consider the equation

o%u *u Pu Bu dv du __ BT (. kpw-n) +ix
P etV Rty T @ T T w S‘ lak @25
h

It is obvicus that, if u is determined, ¢, is then found from the con-
dition ¢3 = Im u.

We shall seek & solution of equation (2.5) in the form
1 o
u= ;S Ak, t) LR+l g 2.6)
0

Subatituting (2.6) into (2.5) and comparing the left and right sides,
we find the condition for determining A(k, t)

d
d—}’-‘--zzka-—”—[vk*—gk+;k ‘“}A_—z—-gl‘ @1

We shall introduce the new variable

"

B::Aexp(—dk&vdr)
0
Substituting the latter equality into (2.7), we obtain
B" + gkB = — gl oxp(— ikS vdv) (2.8)

[H]
The characteristic equation of (2.8) is

m?4- gk =0, mys=+iV gk

We shall take the particular solution of the inhomogeneous linear
equation in the form
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' LTy sin[VREE—D)
B=—gr § exp (—- ik § vdt) VT dt (2.9)
We then obtain
1 t . —
A= —gFSexp (ik S vdr) i [Vf/ké_f/_:“"” dx (2.10)
0 T

Substituting (2.10) into (2.6) we obtain

u=—5:—l;-§°‘gexp {k[(y-—h)—}-i(x—{—i m)]} s‘“”’:’j"gﬁ;"" dedk  (2.41)
o0 T

oo !
r | —
Pe=lmu= — g—n—g S Ve efW-h gin k[:c-{— S vdt] sin V gk (t — 1) dv dk (2.12)
00

T

We shall now determine the form of the stream function through the
equations

For calculating y,; we have the equality

0
w=\" a1 Qw (2.13)

where Q(y) is for the present an unknown function of y. It can be found
from the condition

3 i
= —\Gratow 214)

After carrying out the calculation, we obtain that Q'(y) = 0. We shall
set 8(y) = const = 0. Consequently,

w=—01
0

V gk
We shall construct an expression for the complex potentjal wj(z, t) =
¢y + iy, where z = x + iy of a vortex in unsteady motion

§ ! e R cos [Ir (z+ tg vdt)]sin[]/g_lc(t—t)]dtdk (2.15)
0 T

4

- . . t
re ~ik [2-th] ) . _
w3z, 1) = —i—li (SliT/—g_T‘-—— exp (—- ik S vd‘r) sin [V gk(t—1)ldvdk  (2.16)

The total complex potential for the motion of the vortex is
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217

oo
I . z+ih , gL ki
W(z,t)z‘mln +%SS

o0

¢
— Vo exp (- ikS vd‘r) sin [V gk (t— v)) dv dk
T

From (2.17) it is seen that the expression obtained satisfies both
the boundary conditions and the initial conditions. Indeed, assuming that
the vortex is found in a state of rest at the initial moment of time
(v(0) = 0), we obtain from (2.17)

1
t@0=g5r=0  ©=0 fort=0,y=0

i.e. at the initial moment of time the free surface of the fluid is hori-
zontal and the motion of the fluid commences without initial velocity.

3. Let a plane source of strength Q(t), which is being moved from a
state of rest in an unsteady manner along the x-axis, be found at the
point (0, -h).

We shall assume that at the initia]l moment of time the strength of the
source is equal to Q(0) = 0. The velocity potential ¢(x, y, t) of the
absolute motion is found from the solution of the equation Ap = 0 with
condition (1.1) and the boundary conditions at infinity. As initial con-
ditions one can take the condition that for t = 0 the free surface is
initially found at rest in its horizontal position of equilibrium.

To find the disturbed velocity potential ¢(x, y, t) we construct the
expression

r=o—otw (o=l nVFTGTR, o=t Y ITTG—F)

3.1)

Taking (3.1) into account equation (1.1) will have the form

0
g, ) Poy, 9y dv 89 _ gQ (1) -
*;375'"—207;5;+”"5;f+8‘5y’ i e S # WP coskzdk  (3.2)

i
Solving (3.2) in a manner analogous to that set forth in Section 2,
we obtain

Qs = % S:g 3%’ ek WP ¢og [k (z + S vdt)] sin [V gk (¢ — 1)] dkdx 3.3)

It is easy to verify that (3.1) satisfies the initial conditions of
the problem. Indeed, taking (3.3) into account it is seen from formula
(3.1) that 1if Q(0) = 0 for t = 0 the motion of the fluid then arises
from a state of rest. If Q(0) = Q,#0 for ¢t = 0, we shall then have at
the initial moment
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00,0 = 5 aVAFGLH —ln VATG—P) (3.4

The equation of the free surface at the initial moment will be deter-
mined by (1.4). Substituting (3.4) into (1.4), we obtain that {(x,0) =0
i.e. in this case at the initial moment of time ¢t = 0 the free surface is
found at rest in its horizontal position. We shall find an expression for
the stream function from condition (2.13).

Carrying out the calculation, we obtain

Vs = —f? ‘Sj S) %’(g% &Kv-h sm[ (z + ‘S vdr)] sin [V gk (¢ — )] dkdr (3.5)

¢ 1
o3z, 1) = ?‘%S SQ () -tk1z-mm1 exp (— ik S vd‘r) sin [V gk (¢ —7)] dkdt  (3.6)
(L] 0

The complex potential for the unsteady motion of a source will have
the form

W (2, 0=~ 1 (2 4 ih) (5 — i) +

wt i
iS S ek1z=h] gy (- ikS v dt) sin [V gk (g — )] dk dx @7
T 9 0 gk

T

Differentiating (3.7) with respect to z, we obtain an expression for
the complex potential of a doublet with axis parallel to the x-axis

Q) 1 1
Wizt == [z+ia‘”z~m]+
H

oot
+ ?[17& S Q (t) V gk e ¥ (2-1h) oxp (— ikS m) sin Vgk(t—T1)dkdy  (3.8)
090 T

By virtue of the linearity of the boundary conditions the expression
for the complex potential of a vortex-source in the case of an unbounded
fluid has the form

W(z)—-——"ln( z - ih) + Q&,(;) In(z + ih) = r+qu (t)iln (s + ih) (3.9)

The complex potential of the unsteady motion of a vortex-source under
a free surface will then have the form

PV(z,t):Tn'ii-ln(zm—zl)-——z—n—i-ln(z——;l)-}-
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Xl

g F —ik (z—z. _ ! .
— S ————— Bexp (— ik\ vdr) sin V gk (¢ — x) dkdx (3.10)
T V gk :

o

Here the notation
I +iQ =B, '—iQ =28, 3t+ih=35—3
has been introduced.

4. We shall calculate the complex potential W(z, t) = ¢ * iy for the
unsteady motion of an arbitrary contour with velocity »(t) under the free
surface.

We shall assume that the motion of the contour commences from a state
of rest. In this case the problem of finding W(z, t) is reduced to find-
ing analytic functions ¢(x, y, t) and y(x, y, t) in the lower half-plane
according to the equation Ap = 0 with the conditions (1.1), (1.2) and
(1.3). As initial conditions we again take the condition that at ¢t = 0
the fluid is found in a state of relative rest in the horizomntal position,
i.sd.

@W /dt),_, =0, ¢=0 at t=0

We shall designate by Wo(z, t) the complex velocity potential of the
flow which is obtained for the unsteady motion of the contour C in an un-
bounded fluid.

We take an arbitrary contour Cl within which the body is found. Then,
for an arbitrary point z lying between the contour and the body the value
Wo(z, t) according to the Cauchy formula will be

Wole, ) = 5 | —pee?

2 ) E—z % 1)
&

where the variable of integration, which runs around the whole contour of
integration, is denoted by §. According to the Cauchy formula the ex-
pression for the complex velocity will be

dWe 1 C dW, dt 1 ‘dW.
dz i )L Tz ) T—s (4.2)

Let dFy (L, t) = dg, + idy,. From formula (3.9) it is seen that the
complex velocity of a vortex-source will be

- r4+iQ 1
v(z,)="2m ¢

If the last expression v(z, t) be compared with formula (4.2), one



1680 A.N. Shebalov

can imagine that the fluid motion takes place as a result of the presence
of a series of vortex sources on the contour C. Moreover, a vortex dg,
and a source dy, are located on each elementary length dl of the contour.
Then, replacing B =T + iQ by d¥y(z, t) in formula (3.10) and carrying
out the integration along the contour C, we obtain an expression for the
complex velocity from the vortex-sources distributed along the contour.

This wave motion can be regarded in the first approximation as that
which would have been generated by the motion of the contour C. The
approximate aspect of the solution is a result of the fact that the
strength of the vortices and sources for the motion of the contour under
a free surface are different from the values which ' and Q would have for
the motion of the contour in an unbounded flow. This change will be the
smaller the deeper the contour is immersed in the fluid.

In the first approximation the solution of the problem of the unsteady
motion of the contour C under the free surface can be determined by the
formula

aw d(: n__ (dW g t))1 + (dW d(tz ,t))z @3
Here
(ddw )= o § dvf"_@é L 4.4)
(dd 2;” Scdwn(g H

- —:—‘«S dW, (L, 1) io V ket -0 gy S exp (— ik § vdr) sin ¥V gk (t —v)dv (4.5)
4 ° o

T

The solutions (4.3), (4.4) and {4.5) satisfy all the conditions of
the problem, including the initial conditions also, since, for t = 0, Wo
is equal to Zzero.

The forces which act on the body can be calculated from the formula
aw i dv{t dW\s
X+£Y=ip\ -—;&—-dznu—‘;— ” ‘ (e — 2 dzy 4 S ( ) dz] (4.6)
c ¢

where X and Y denote the projections of the force on the x- and y-axis,
and z; = x — iy.

Formula (4.6) was obtained by Sretenskii {1] and follows as a special
case of the more general formula of Chaplygin {3}. For calculating the
forces, as has been shown by Kochin [4]. the complex velocity for an un-
bounded fluid v(z) = (dWo/dz)m can be taken in the first approximation
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in place of v(z) = dWo/dz. This class of forces is not considered in this

paper.

Theé wave resistance of an arbitrary contour and its lift of wave
nature will be determined by the third term of (4.6), i.e.

X 4+iY = 2‘) S (%): dz (4.7)
C

In formula (4.7) the derivative (dWo/dz)0 is the complex velocity in
the relative motion; therefore

() = (@), + (@), 0

We shall compute the integral

dW \?
7=\ () o

(s [ efere § ([ vl o

Cy Cy Cy

The first two integrals here vanish, i.e.
V(@ e =0 V[(E),—v0]
T dz =0, \ (dz 2-—11(!) dz =0
C C,

since the function (dW/dz)1 is holomorphic on and exterior to the con-
tour C1 and has a zero of at least first order at infinity, and the func-
tion (dW(z, t)/dZ)2 is holomorphic on and interior to the comtour Cj.

The equality (4.8) can be represented yet again as

e § [ (42 J(40) - i 22 [(45) vl

| (@), [(F),2]as =0

v
1

Consequently,
aw dW [ dW
J:ZS i (dz>dz—20(t)\ a7 dz—-zg -d—z(dz)dz—Zv(t)l‘
C; Cx 1
aw
(r=\ Ga) (4.10)

Here [T is the circulation of the velocity about the contour C. Making
use of expression (4.5), we obtain
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| o (), —H}‘Sj = “W; =
4

[e0]
— 2 g V ghe— =0 gy, S exp
0

‘L/1-

sm Vek(t—1) dt] dsdf (4.11)

Substituting (4.11) into (4.7), we obtain

8

dW dw 1
X+iY=L\ ——T[ —2i

i—1
!
x%exp(m
0

P |

Vihe e ai
0

Ay~

vdt) sin Vgk(t—r) dt] dzdf —ipp(2) T (4.12)

We shall transform the right-hand side of (4.12), If the points § and
z belong to the lower half-plane, the following equality is valid:

1
— =i

:—1

Then the first integral term of (4.12) takes the form

=0 g

OE_/?S

(o]

dW d dw dW
S W L d;_g SS ~ e~ k2T gk dzdf =
C 'c -t ¢

O

l

¢ aw
=iS H(k, t)H (kyt)dk = i S | H (k, t) |? dk (H(k, t)=Se—"“ &
0 0

dZ) (4.13)
C

An arbitrary contour of the lower half-plane which encircles the con-

tour C in the positive direction can be taken as the contour of integra-
tion.

The remaining part of (4.12) is written in the following form:

vdr) sinV gk (t —v)dvdsdf =

G C

— 0O

W ]
&SS I \VMFWFOM MM—M

0

00
= 2.\ | H (k, ) V gkdk

exp(——ik
°

v d‘r) sin Y gk(t — v)dv (4.14)

Ay ™ A ™

|
§

Consequently

oo

o]
o . B
xviv =2\ 1mw opas— 2 (HE 0 VR
o 0
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§exp( lk‘Svdt) sin V gk (t —v)dv — ipv (t) T (4.15)

The wave resistance is then

o <] t t
R= 7‘:—‘ |H (K, t)[? Vﬁdkgsin (kS vdr) sin Y gk (t — 1) dt (4.16)
0 0 T
Y=pS+pev()T —2—;—8 | H (k, t) [*dk 4 (4.17)
0
Q0 [} t
+ ,‘:“S |H (k, t) |* Vil?dkgcos (kSvdt) cos V gk (¢t — v)dv
0 0 T

Here pgS is Archimedes’ displacement force; S is the area which enve-
lops the contour.

In conclusion we shall find the wave resistance and the 1ift of a
cylinder of radius ro with circulation I about the contour of the
cylinder in unsteady motion at a depth h under the free surface. The com-
plex velocity corresponding to the motion in an unbounded fluid has the
form

aw v (7) ro? r
(_)oo= C+aptmGETm (4.18)
Then
o= &Hu (G)_ = e [T + 200 (3) k) (5.19)

Substituting (4.19) into (4.16), we obtain

oo t t
R= —n‘l- S e %R VYV ek [T 4+ 2r0 (x) kre?]? dk %sin (kg vdt) sin YV gk (¢ —1)dv  (4.20)
0 0

T

For [ = 0 we obtain the wave resistance of a cylinder

©o ¢ 4
R= 4J'|:pgro‘8 e YV ek dk S % (1) sin (k& vd'r) sinVgk(t —1)dy  (4.21)
0 [ T

The latter formula is analogous to the formula of Sretenskii [1].

Indeed, replacing v(T) by J(gk)/k and, in addition, replacing the
sines in the inner integral by cosines with the same arguments (this
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leads only to a change in sign), we obtain an expression for the wave
resistance of a cylinder in the form of Sretenskii

Setting the radius o equal to zero in (4.20), we obtain the wave re-
sistance of a vortex

sin (k i vdt) sin V gk (t — 1) dv (4.22)

T

(e o]

2-. PE—
R= -ri-g e Y ekdk

»

b1

=YY

0

In conclusion 1 take this opportunity to thank L.N. Sretenskii for
the advice given by him dyring the review of this work.
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