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The problem of calculating the wave resistance of a cylinder moving under 
a free surface in unsteady motion has been previously solved by Sretenskii 
[I] and Havelock [21. E xpressions for the complex velocity and the forces 
for the unsteady motion of an arbitrary plane contour under a free sur- 
face are calculated below. 

1. Let a plane contour of arbitrary form be set in UIOtiOn front 8 state 
of rest with the velocity u(t) under the free surface of a heavy ideal 
incompressible fluid. 

We shall choose a coordinate system such that the origin of the co- 
ordinates is located in the horizontal plane which is coinoident with 
the initial undisturbed level. The x-axis is in the direction of the 
m&ton and the y-axis is directed vertically upwards. Ve shall consider 
the fluid motion to be potential and the waves which arise on the free 
surface to be small. The latter assumption is equivalent to the contour 
being deeply submerged in the fluid. 

To find the absolute potential cp(r, y, t) of the disturbed velocities 
of the moving contour in a moving coordinate system we have the Laplace 
equation AQ = 0 with the boundary conditions: 

at the free surface for y = 0 

at the surface of the body 
acp 

-&- = vn 0) 

(1.1) 

(1.2) 
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at infinity 

cp (z, Y, r) + 0 for r4+m, cp (rt Y, t) + 0 for Y -+---00 (1.3) 

As initial conditions one can take the condition that the motion of 

the contour commences without initial velocity and, in addition, that the 

fluid is found at rest with its surface horizontal. Indeed, for the prob- 

lem under consideration the equation of the free surface will be deter- 

mined by the formula 

At the initial moment of time t = 0 let 

of rest, i.e. let v(O) = 0; then for t = 0 

Thus, in order 

found at relative 

necessary that 

that the fluid at the initial moment of time t = 0 be 

rest and that its free surface be horizontal, it is 

for y = 0 (1.4) 

the contour be found in a state 

As a preliminary we shall consider the particular cases of the unsteady 

motion of singularities of the type of plane vortices, sources, etc. 

2. Let a plane vortex with constant circulation r at depth h under the 

free surface be moved from a state of rest. The velocity potential 9(x, 

y, t) of the absolute motion is then found from the solution of the equa- 

tion A9 = 0 with condition (1.1) and the boundary conditions at infinity. 

We shall form the expression 

( r 
‘p=‘p1-%+cp3 

Y+h 
‘pl = - G tar 

y--h 
z , t& =& tan-’ -y- 

) 
(2.1) 

in which q3 is for the present an unknown function. It is obvious that 

for y = 0 

& (e - WI = 0, 

a2 
@ (cp1- cp2) = 0, &tp1-92) =-2az 

Then equation (1.1) for y = 0 taking (2.1) into consideration takes 

the form 

acp3 q$ - 2v (t) - 
d”T3 arp3 dv (t) aq3 

-t v2(t) yg+Eq- - at az 
a% 

axat =2&T ay (2.2) 

In all that follows we shall write v instead of u(t). Since 
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the equality 

arps rm -=---- 
a 2Yc s ek(II-“) sin kxdx 

0 

(2.3) 

will then be valid for y = 0. 

Then equation (2.2) for y = 0 will have the form 

Ue shall consider the equation 

aatd a9d 
ati - zv -afi + 

It is obvious that, 
dition ‘pg = Im u. 

03 

aa, au da au i?r 
Va~+ga~-~~=-~ c s 

~fw-w+w dk (2.5) 

0 

if u is determined, q3 is then found from the con- 

We shall seek a solution of equation (2.5) in the form 

m 
1 

U=n s 
A (k, t) ek if@-@ +i*l & (2.6) 

0 

Substituting (2.8) into (2.5) and comparing the left and right sides, 

we find the condition for determining A(k, t) 

@A do do 
dt2 - 2ikv dt - vair-gkfikz A=-gl’ 

3 

We shall introduce the new variable 

B=.lexp(-ikjvdr ) 
0 

Substituting the latter equality into (2.7). we obtain 

Be-l-gkB=-gTeip(-ikivdvdr) 
0 

The characteristic equation of (2.8) is 

ms+gk=o, W,a=fi)/iT 

Ue shall take the particular solution of the inhomogeneous linear 
equation in the form 

(2.7) 

W) 
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B=-gI’\exp(--i)ri vdr) sin’V~~-T)] dr 

0 0 

We then obtaln 

A=--gT\erp(ih\ vdr) sin[VFiwr)l dr 

0 t 

(2.9) 

(2.10) 

substituting (2.10) Into (2.6) we obtain 

u=-$rjexp{k[(y-h)+i(z+ 5 vdr)]} sin[v~~-T” &d& (2.11) 

0 0 5 

Hence 

aIf 

&(w-“)sinA[s+ 5 odr]sin vs(t--w)dr dk (2.12) 
+ 

We shall now determine the form of the stream function through the 
equations 

aq/ax=agIay, acp/ay=-aagjaz 

For calculating \y3 we have the equality 

where Q(y) Is for the 
from the condition 

present an unknown function of y. It can be found 

aTa -=- - aacps 
az s ayadx+Uy) 

After carrying out 

set 6(y) = const = 0. 
the calculation, we obtain that Q’(y) = 0. We shall 
Consequently, 

(2.13) 

(2.14) 

sin [l/s (t- r)] drdk (2.15) 
7 

We shall construct an expression for the complex potential ~~(2, t) = 
q3 + iy’y where L = x + iy of a vortex In unsteady motion 

erp(- ik\ vdr)sin[vs(t-z)]drdk (2.16) 
7 

The total complex potential for the motion of the vortex Is 
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(2x9 

From (2.17) it is seen that the expression obtained satisfies both 
the boundary conditions and the initial condftions. Indeed, assuming that 
the vortex is found in a state of rest at the initial moment of time 

(v(0) = 0) , we obtain from (2.17) 

f (z, 0) = f a5 = 0, 

i.e. at the initial moment of time 
zontal and the motion of the fluid 

3. Let 8 plane source of strength Q(t), which is being moved from a 
state of rest in an unsteady manner along the x-axis, be found at the 
point (0, 4). 

ge shall assume that at the initial moment of time the strength of the 

CD= 0 for t =O, y=O 

the free surface of the fluid is hori- 
commences without initial velocity. 

eource is equal to Q(0) = 0. The velocity potential 9(x, y, t) of the 
absolute motion is found from the solution of the equation &+I = 0 with 
condition (1.1) and the boundary conditions at infinity. As initial con- 
ditions one can take the condition that for t = 0 the free surface is 
initially found at rest in its horizontal position of eouilibrium. 

To find the disturbed velocity potential (p(x, y, t) we construct the 
expression 

Taking (3.1) into account equation (1.1) will have the form 

Solving (3.2) in a manner analogous to that set forth in Section 
we obtain 

T ,* Wh) cos k s+ [ ( 5 odr)lsio[~~(t-_)]dkdr 
1 

It is easy to verify that (3.1) satisfies the initial conditions 

(3.1) 

(3.2) 

2, 

(3.3) 

of 
the problem. Indeed, taking (3.3) into account it is seen from formula 
(3.1) that if Q(0) = 0 for t = 0 the motion of the fluid then arises 
from a state of rest. If Q(0) = Qe #O for t = 0, we shall then have at 
the initial moment 
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rp(I,y,0)=~-(in?x8+(y+h)8--n Va+h-w (3.4) 

The equation of the free surface at the initial moment will be deter- 
mined by (1.4). Substituting (3.4) into (1.41, we obtain that &(z,O) = 0, 

i.e. in this case at the initial moment of time t = 0 the free surface is 
found at rest in its horizontal position. We shall find an expression for 
the stream function from condition (2.13). 

Carrying out the calculation, we obtain 

+(z, t) will then have the form 

fo* (2, L) = -$ m1 Q 6’) ss c e-‘ktr-alexp(- ik \ v&)sin[l/~(t--r)J&& (3.6) 

00 v-gk 0 

The complex potential for the unsteady motion of a source will have 
the form 

Differentiating (3.7) with respect to z, we obtain an expression for 
the complex potential of a doublet with axis parallel to the r-axis 

+$-r\ Q (t) ~~e-“(*-ih)exp (- ik\ adr)sin I/s@-r)dkdr (3.8) 

u 0 r 

By virtue of the linearity of the boundary conditions the expression 
for the complex potential of a vortex-source in the case of an unbounded 
fluid has the form 

w (2) = &In (z + ih) + G In (z + ih) = ’ L: (‘) i In (I + ih) (3.9) 

The complex potential of the unsteady motion of a vortex-source under 
a free surface will then have the form 

B 
W (2, t) = 1 In (2 - 23 - 

2JtL 
&ln( -) g-21 $ 
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co: l 

-j- -$- \ \ ee’kGz’ B exp (- ik 5 vdr) sin v/3 (t - 7) dkdl (3.10) 

Oi + 

Here the notation 

r+iQ=B, I’-iQ=B, a+ih=z-zl 

has been introduced. 

4. We shall calculate the complex potential W(Z, t) = 9 + iyr for the 
unsteady motion of an arbitrary contour with velocity u(t) under the free 
surface. 

We shall assume that the motion of the contour commences from a state 
of rest. In this case the problem of finding W(z, t) is reduced to find- 
ing analytic functions tp(x, y, t) and y(~, y, t) in the lower half-plane 
according to the equation Aq = 0 with the conditions (1.1). (1.2) and 
(1.3). As initial conditions we again take the condition that at t = 0 

the fluid is found in a state of relative rest in the horizontal position, 
i. d. 

VW I dt),=, = 0, cp=o at t=O 

We shall designate by Ro( z, t) the complex velocity Potential of the 
flow which is obtained for the unsteady motion of the contour C in an un- 
bounded fluid. 

We take an arbitrary contour C, within which the body is found. Then, 
for an arbitrary point z lying between the contour and the body the value 

We(Z, t) according to the Cauchy formula will be 

(4.1) 

where the variable of integration, which runs around the whole contour of 
integration, is denoted by 5. According to the Cauchy formula the ex- 
pression for the complex velocity will be 

Let dW,(<, t) = dq, + idy,,. From formula (3.9) it is seen that the 
complex velocity of a vortex-source will be 

l’+iQ 1 
0 (z, t) = - 2nc z-6 

If the last expression ii(z, t) be compared with formula (4.2). one 

(4.21 
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can imagine that the fluid motion takes place as a result of the Presence 

of a series of vortex sources on the contour C. Moreover. a vortex dq, 
and a Source dy, are located on each elementary length d( of the contour. 
Then, replacing B = r + iQ by dRo(z, t) in formula (3.10) and carrying 
out the integration along the contour C, we obtain an expression for the 
complex velocity from the vortex-sources distributed along the contour. 

This wave motion can be regarded in the first approximation as that 
which would have been generated by the motion of the contour C. The 
approximate aspect of the solution is a result of the fact that the 
Strength of the vortices and sources for the motion of the contour under 
a free surface are different from the values which r and Q would have for 
the motion of the contour in an unbounded flow. This change will be the 
smaller the deeper the contour is immersed in the fluid. 

In the first approximation the solution of the problem of the unsteady 
motion of the contour C under the free surface can be determined by the 
formula 

Here 

(4.4) 
1 

=x 
c 

dWo (5,l) 

‘C 
2-c 

i -- 
x @II (I;, 1) vs((t-r)df (4.5) 

c 0 0 f 

The solutions (4.3)) (4.4) and (4.5) satisfy all the conditions of 
the problem, including the initial conditions also, since, for t = 0, lo 
is equal to zero. 

The forces which act on the body can be calculated from the formula 

where X and Y denote the projections of the force on the x- and y-axis, 

and z1 = x - iy. 

Formula (4.6) was obtained by Sretenskii [l] and follows as a Special 
case of the more general formula of Chaplygin [3]. For calculating the 
forces, as has been shown by Kochin 141, the complex Velocity for an un- 

bounded fluid V(Z) = (dW,/dz), can be taken in the first approximation 
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in place of C(Z) = dW,/dz. This class of forces is not considered in this 

paper. 

The wave resistance of an arbitrary contour and its lift of wave 

nature will be determined by the third term of (4.6). i.e. 

(4.7) 

In formula (4.7) the derivative (dW,,/dz), is the complex velocity in 

the relative motion; therefore 

(Jg, = (-g),+(-$),-w 
We shall compute the integral 

The first two integrals here vanish, i.e. 

\ [(~)2-~(~J]e dt =O 
Cr 

since the function (dW/dz)l is holomorphic on and exterior to the con- 

tour C, and has a zero of at least first order at infinity, and the func- 

tion (dW(z, t)/dz) 2 is holomorphic on and interior to the contour Cl. 

The equality (4.8) can be represented yet again as 

Consequently, 

J=2\ T($)2dz --u Oi i $dz=2! $(G),dz-2Bu(qr 
h 

(I’:! $dz) ’ (4.10) 
1 

Here I- is the circulation of the velocity about the contour C. Making 

use of expression (4.5), we obtain 
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- (4.11) 
0 : 

substituting (4.11) into (4.7), we obtain 

1 
dz di - ipv (1) I’ (4.12) 

We shall transform the right-hand side of (4.12), If the points < and 
z belong to the lower half-plane, the following equality is valid: 

03 
1 _ _ i 

‘i z--E_ ; 
e-ik(z-i) dk 

Then the first integral term of (4.12) takes the form 

si dW dw 1 ‘dW d? 
--- dz dc = - - e-ik’ctkt dk dz di = 

c, i: 
dz dt; z-t s ss dz d& 

Cl c 0 
u) 

H(k,t)H(k,.t)dk=i~~H(k,t))‘dk =I 
s 

(H (k, t) = \ @z z dz) (4.13) 

0 0 i: 

An arbitrary contour of the lower half-plane which encircles the con- 
tour C in the positive direction can be taken as the contour of integra- 

tion. 

The remaining part of (4.12) is written in the following form: 

- 2i 
ss 

r/&T-- U(Z~~)dk~exp(-ik \vdr)sinvph(t-r)drd.df= 

c, c 0 5 

=- zirloir,t)~~Y~dkjex~(-ikivd~).inVs*(r--r)dr (4.14) 

0 + 

Consequently 
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xierp(-ikjvdr)sh~~(t-r)dr--ipv(t)r 

i 7 

The wave resistance is then 

(4.15) 

R = s c 1 H (k, t) Ia )/gkdk sin I/&(t - v) dr (4.16) 
iJ 0 r 

oa 

Y=pgS+pv(t)L& IH(k, t)[‘dk+ 
s 

(4.17) 
0 

00 

+;l IH(k t,I'v$dk \coS (k\vd+os vgk(t- r)ds 

0 0 7 

Here pgs iS Archimedes’ displacement force; S is the area which enve- 
lops the contour. 

In conclusion we shall find the wave resistance and the lift of a 
cylinder of radius r,, with circulation r about the contour of the 
cylinder in unsteady motion at a depth h under the free surface. The com- 
plex velocity corresponding to the motion in an unbounded fluid has the 
form 

v (r) ro8 r 
= (Z + 2JCi (2 + ih) 

Then 

(4.18) 

(4.19) 

Substituting (4.19) into (4.16), we obtain 

00 

-skh vs[l- + 2nv (T) kro sin Jf$(t -~)dr (4.20) 
0 0 1 

For r = 0 we obtain the wave resistance of a cylinder 

R = 41Ipg'o'7 ,-2khk3 l/Fdk ivz(T)sin(kSvdr)siny~(t--r)dr (4.21) 

0 0 7 

The latter formula is analogous to the formula of Sretenskii [l]. 

Indeed, replacing v(v) by J (gk)/k and, in addition, replacing the 
sines in the inner integral by cosines with the same arguments (this 
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leads only to a change in sign), we obtain an expression for the wave 

resistance of a cylinder in the form of Sretenskii. 

Setting the radius r0 equal to zero in (4.20). we obtain the wave re- 

sistance of a vortex 

In conclusion I take this opportunity to thank L.N. Sretenskii for 

the advice given by him during the review of this work. 
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